Semispectroscopic and quantitative structure-property relationship estimates of the equilibrium and vibrationally averaged structure and dipole moment of 1-buten-3-yne.
نویسندگان
چکیده
Systematic quantum chemical calculations have been performed to obtain precise estimates of the equilibrium and vibrationally averaged molecular structure and electric dipole moment of vinylacetylene (VA, 1-buten-3-yne). Anharmonic (cubic and semi-diagonal quartic) MP2/cc-pVTZ force fields in normal coordinates were computed to account for anharmonic vibrational effects, including zero-point contributions to the rotational constants and the electric dipole moment. A simultaneous weighted least-squares structural refinement was performed, resulting in the best semispectroscopic estimate of the re structure of VA. The refinement was based on experimentally measured ground-state rotational constants of two isotopologs of VA corrected to equilibrium values using MP2/cc-pVTZ vibration-rotation interaction constants and all-electron CCSD(T)/aug-cc-pVTZ structural constraints. The semispectroscopic re structure of VA agrees excellently with the high-level CCSD(T)/aug-cc-pVTZ ab initio structure. The most dependable, CCSD(T)/cc-pVQZ//CCSD(T)/aug-cc-pVTZ equilibrium electric dipole moment of VA, in D, is mua= 0.4088, mub= 0.0004, and muc= 0. The vibrationally corrected a-component of 0.4214 D is in excellent agreement with one of the available experimental values. The present analysis shows that mub is negligible even after vibrational correction. A simple quantitative structure-property relationship (QSPR) model resulted in a highly similar estimate, 0.45 D, for the electric dipole moment of VA.
منابع مشابه
Ab Initio Study of Vinblastine-Tubulin Anticancer Complex
Vinblastine is an important anticancer agent known to diminish microtubule assembly. Ab initio calculations are applied to examine the structural properties and different energies of vinblastine-tubulin complex in different dielectric constants and temperatures. The aims of this work are discovery the best optimized structure and thermodynamic properties of vinblastine-tubulin complex ...
متن کاملApplication of Graph Theory: Relationship of Topological Indices with the Partition Coefficient (logP) of the Monocarboxylic Acids
It is well known that the chemical behavior of a compound is dependent upon the structure of itsmolecules. Quantitative structure – activity relationship (QSAR) studies and quantitative structure –property relationship (QSPR) studies are active areas of chemical research that focus on the nature ofthis dependency. Topological indices are the numerical value associated with chemical constitution...
متن کاملQuantitative Structure-Property Relationship to Predict Quantum Properties of Monocarboxylic Acids By using Topological Indices
Abstract. Topological indices are the numerical value associated with chemical constitution purporting for correlation of chemical structure with various physical properties, chemical reactivity or biological activity. Graph theory is a delightful playground for the exploration of proof techniques in Discrete Mathematics and its results have applications in many areas of sciences. A graph is a ...
متن کاملQuantitative Structure-Pproperty Relationship Modeling of the Redox Potential for Some Phenolic Antioxidants
In this work, quantitative structure-property relationship (QSPR) approaches were used to predict the redox potential of 42 phenolic antioxidants. The structures of all compounds optimized by the AM1 semi-empirical method and then a large number of molecular descriptors were calculated for each compound in the data set. Subsequently, stepwise multilinear regression was applied to select the mos...
متن کاملA QSAR Study of 2-carboxamide-1,4-di-N-oxide quinoxaline Derivatives
A set of density functional theory (DFT) calculations were performed on 2-carboxamide-1,4- di-N-oxide quinoxaline (2CdNOQ) derivatives. The optimized structure of these compounds in three forms was obtained. Some electronic parameters including dipole moment (μ),ionization potential (I), electron af finity (A), LUMO energy (εLUMO), HOMO energy (εHOMO),electronegativity (χ), hardness (η), ele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. A
دوره 109 21 شماره
صفحات -
تاریخ انتشار 2005